My 30 tips for building a Microsoft Business Intelligence solution, Part IV: Tips 16-20

A note about the SSAS tips: Most tips are valid for both dimensional and tabular models. I try to note where they are not. 

#16: Implement reporting dimensions in your SSAS solution

Reporting dimensions are constructs you use to make the data model more flexible for reporting purposes. They usually also simplify the management and implementation of common calculation scenarios. Here are two examples:

  • A common request from users is the need to select which measure to display for a given report in Excel through a normal filter. This is not possible with normal measures / calculations. The solution is to create a measure dimension with one member for each measure. Expose a single measure in your measure group (I frequently use “Value”) that you assign the correct measure to in your MDX script / DAX calculation based on the member selected in the measure dimension. The most frequently used measure should be the default member for this dimension. By doing this you not only give the users what they want, but you also simplify a lot of calculation logic such as the next example.
  • Almost all data models require various date related calculations such as year to date, same period last year, etc. It is not uncommon to have more than thirty such calculations. To manage this effectively create a separate date calculation dimension with one member for each calculation. Do your time based calculations based on what is selected in the time calculation dimension. If you implemented the construct in the previous example this can be done generically for all measures that you have in your measure dimension. Here is an example for how to do it tabular. For dimensional use the time intelligence wizard to get you started.

#17: Consider creating separate ad-hoc and reporting cubes

Analysis Services data models can become very complex. Fifteen to twenty dimensions connected to five to ten fact tables is not uncommon. Additionally various analysis and reporting constructs (such as a time calculation dimensions) can make a model difficult for end users to understand. There are a couple of features that help reduce this complexity such as perspectives, role security and default members (at least for dimensional) but often the complexity is so ingrained in the model that it is difficult to simplify by just hiding measures / attributes / dimensions from users. This is especially true if you use a “reporting cube” which I talked about in tip #16. You also need to consider the performance aspect of exposing a large, complex model to end user ad-hoc queries. This can very quickly go very wrong. So my advice is that you consider creating a separate model for end users to query directly. This model may reduce complexity in a variety of ways:

  • Coarser grain (Ex: Monthly numbers not daily).
  • Less data (Ex: Only last two years, not since the beginning of time).
  • Fewer dimensions and facts.
  • Be targeted at a specific business process (Use perspectives if this the only thing you need).
  • Simpler or omitted reporting dimensions.

Ideally your ad-hoc model should run on its own hardware. Obviously this will add both investment and operational costs to your project but will be well worth it when the alternative is an unresponsive model.

#18: Learn .NET

A surprisingly high number of BI consultants I have met over the years do not know how to write code. I am not talking about HTML or SQL here but “real” code in a programming language. While we mostly use graphical interfaces when we build BI solutions the underlying logic is still based on programming principles. If you don’t get these, you will be far less productive with the graphical toolset. More importantly .Net is widely used in Microsoft based  solutions as “glue” or to extend the functionality of the core products. This is especially true for SSIS projects where you quite frequently have to implement logic in scripts written in C# or VB.net but also applies to most components in the MS BI stack. They all have rich API’s that can be used for extending their functionality and integrating them into solutions.

#19: Design your solution to utilize Data Quality Services

I have yet to encounter an organization where data quality has not been an issue. Even if you have a single data source you will probably run into problems with data quality. Data quality is a complex subject. Its expensive to monitor and expensive to fix. So you might as well be proactive from the get-go. Data Quality Services is available in the BI and Enterprise versions of SQL Server. It allows you to define rules for data quality and monitor your data for conformance to these rules. It even comes with SSIS components so you can integrate it with your overall ETL process. You should include this in the design stage of your ETL solution because implementing it in hindsight will be quite costly as it directly affects the data flow of your solution.

#20: Avoid SSAS unknown members

Aside from the slight overhead they cause when processing, having unknown members means that your underlying data model has issues. Fix them there and not in the data model.

About these ads

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s